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Surface soil moisture is a variable of great importance in several agronomic, hydrological and meteorological
processes. The knowledge of its magnitude and its spatial distribution is essential to adequately describe and
model the processes where it is involved.
Radar remote sensors measure microwave energy backscattered by natural surfaces. This scattered energy

depends on the geometrical and the dielectric properties of surfaces. In the case of bare soil surfaces, the
dielectric properties are directly related to the soil water content, so theoretically, radar remote sensing allows
the extraction of spatially distributed soil moisture information. However, the influence of surface roughness
on the scattering process limits the ability to correctly estimate volumetric soil moisture values unless detailed
roughness measurements are acquired.
The present paper reports the results of a study where five images from the remote radar sensor on the

satellite RADARSAT-1 were processed and correlated to ground measured soil moisture values over an
agricultural catchment. Linear regression models were fitted between RADARSAT-1 derived backscattering
coefficient s0 and the soil moisture at different spatial scales: point scale, field scale and catchment scale.
Three soil moisture classes were identified according to their implications for crop growth: (1) low moisture

values which contributed to water stress in plants; (2) medium moisture content that allowed an optimal crop
growth; and (3) high moisture values which affected crop growth by other means, such as by fungal disease.
Results show a direct relation between s0 and the soil moisture. At the catchment scale the observed

correlation is high. At detailed scales, however, variability increases, causing a decrease of correlation values.
The ability of s0 to discriminate between the considered moisture classes seems to be adequate. The accuracy
of the estimation increases from the detailed to coarser scales.
In the case of vegetated fields, the vegetation cover can cause a certain attenuation of the radar pulse

resulting in reduced s0 values. In this research, vegetation-induced attenuation was considered by applying the
semi-empirical ‘Water Cloud’ model.
The presented technique is useful for crop growth monitoring and modelling at medium to large scales,

particularly in early growing seasons where the attenuation of vegetation is not too high. It is also applicable
to irrigation planning or crop health studies. However, regression lines are site specific and can be affected by
the surface roughness variability and vegetation cover of fields.
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1. Introduction

Surface soil moisture is a variable that plays a crucial
role in various processes occurring on the soil–atmo-
sphere interface. At high spatial scales, it influences
meteorological and climatic processes (Burman, 2003;
Chanzy, 2003). At medium scales, it determines hydro-
logical and agronomic processes such as runoff genera-
tion (Jackson, 1980; O’Loughlin, 1986; Georgakakos &
Baumer, 1996; Kirkby, 2001), and evapotranspiration,
crop development or irrigation needs (Wetzel & Chang,
1987; Quesney et al., 2000; Troch et al., 2003). Surface
soil moisture also influences soil erosion processes such
as gully and rill erosion and headcut appearance
(Montgomery & Dietrich, 1988; Moore et al., 1988;
Casalı́ et al., 1999; Kirkby, 2001; Romkens et al., 2001)
or landslide occurrence. At small scales, it exerts a high
influence on biogeochemical processes such as pollutant
migration and, as a result, it is related to water quality
issues (Famiglietti et al., 1999; Huisman et al., 2002).
Surface soil moisture characterisation is a complicated

task due to its high spatial and temporal variability
(Kachanoski et al., 1988). Soil moisture variations
normally follow rainfall trends. Four factors are significant
when determining the variations in the moisture content of
a soil: soil type; vegetation cover; tillage conditions or soil
surface state; and topography. However, the evolution of
the moisture content of soils is more difficult to predict,
due to interactions between these factors.
In the field of hydrology, the soil moisture balance at

a site is known to be the keystone of many fundamental
processes because of its importance on crucial processes
in the hydrologic cycle and its high variability (Rodrı́-
guez–Iturbe, 2000). Moreover, the application of hydro-
logical simulation models and the accuracy of their
predictions are strongly dependent on the knowledge of
the water content of soils being simulated (Rowntree &
Bolton, 1983; Troch et al., 1993; Cognard et al., 1995;
Yu et al., 2001).
On the other hand, soil moisture monitoring is of

great interest for agronomists. Low soil moisture values
cause yield reductions. Furthermore, some growing
stages are particularly sensitive to a lack of moisture.
High soil moisture conditions also severely affect crop
growth as the occurrence of fungal diseases and other
pests is usually favoured to saturated areas.
Most of the soil moisture measuring methods which

have become established consist of point-based probes
which require the application of complex geostatistical
techniques to obtain estimates over fields or larger areas
(Kachanoski et al., 1988). In addition, the high spatial
and temporal variability of the soil moisture makes it
difficult to extrapolate from point-based measurements
to larger scales.
Remote sensing provides a means of acquiring
spatially distributed information of the land surface
with a certain periodicity. The possibility of inferring the
moisture content of soils from remote-sensing images
has been intensively studied (Moran et al., 2004).
Among the different types of remote sensors developed
so far, radar sensors (i.e. ERS-1/2, RADARSAT-1,
ENVISAT-ASAR) have the greatest potential for the
estimation of soil moisture at the field or catchment
scale (Moran et al., 2004).

Radar sensors are active microwave instruments that
emit a radiation pulse towards a target (usually
the Earth surface) and receive the echo, or backscattered
pulse, that returns from the target. The principle
of radar-based soil moisture estimation relies on
the existing relation between the backscattering
coefficient s0 in dB, defined as the ratio of the
power of the returned pulse and that of the emitted
pulse, and the dielectric properties of the observed
soils, being the latter directly related to the
moisture content of soils (Ulaby et al., 1982). Apart
from that, the microwave radiation is not affected by
cloud coverage and radar sensors can also operate
during the night; these characteristics represent
an additional benefit compared to optical sensors (i.e.

LANDSAT, SPOT).
However, radar remote sensing also has its draw-

backs. Over mountainous areas, radar images show
distortions that strongly limit their interpretation.
In addition, surface characteristics, such as roughness
and vegetation cover, do have an influence on the
backscattering coefficient, making it difficult to estimate
the soil moisture unless very detailed knowledge of the
roughness and vegetation cover is available (Altese
et al., 1996). In fact, the ability of radar sensors to
estimate the soil moisture can be completely hampered
in the case of very dense and tall canopies such as
forests. Crop canopies can also influence the back-
scattering coefficient; in order to minimise the influence
of vegetation, radar images acquired at long wave bands
and steep incident angles are preferred.

Several backscattering models have been proposed to
relate the backscattering coefficient of a surface with its
characteristics (soil moisture and surface roughness)
(Ulaby et al., 1982, Oh et al., 1992; Fung, 1994). Models
such as the ‘Integral Equation Method’ model (Fung,
1994), have shown a good performance over laboratory
conditions (Mancini et al., 1999) but their application to
natural conditions have yielded poor results (Altese
et al., 1996). The main difficulty of their use over natural
surfaces is related to the sensitivity of the models to the
surface roughness parameters and the difficulty of
correctly measuring those (Davidson et al., 2000).
Therefore, the estimation of soil moisture from radar
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Fig. 1. Location of La Tejerı́a experimental watershed
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images, based on those backscattering models, requires
a very detailed knowledge of the surface roughness only
achievable through intensive roughness measurement
campaigns.
The main objective of the current research is to

explore the feasibility of soil moisture estimation from
radar remote sensors through a simplistic approach. The
approach is based on the assumption of a linear relation
between the backscattering coefficient of a surface and
its soil moisture over homogeneous surface roughness
conditions (Ulaby et al., 1982). Surface roughness is
assumed to depend only on the tillage practise
performed and not to vary in time. Therefore, the
approach does not require detailed roughness measure-
ments, but only knowledge of the tillage operations
performed on the fields.
A set of five RADARSAT-1 images was analysed and

compared to ground-sampled soil moisture over an
experimental catchment located in the region of Navarre
(Northern Spain). The correlation between the back-
scattering coefficient and the soil moisture values is
analysed at three different spatial scales: point scale,
field scale and watershed scale. The spatial variability
of surface roughness parameters is evaluated and
its influence in the soil moisture estimation analysed.
The influence of the existing cereal vegetation cover is
also assessed through a semi-empirical ‘Water Cloud’
model (Attema & Ulaby, 1978). Finally, the possibi-
lity of identifying different soil moisture ranges is
investigated at the field and catchment scale; and
the practical implications and possible benefits for crop
growth research and other related disciplines are
discussed.
2. Materials and methodology

2.1. Test site

The present work was carried out over an agricultural
watershed located in the mid-region of Navarre (North
of Spain) called La Tejerı́a (Fig. 1). This watershed
forms part of the Experimental Agricultural Watershed
Network of Navarre, created by the local Government
of Navarre in 1993, to enable the impact of agriculture
on hydrological resources to be studied (Donézar & del
Valle de Lersundi, 2001).
After a detailed soil study (Government of Navarre,

2000), ten soil types were identified in the watershed.
The most common soil type was classified as Tipic
Xerorthent and covers most of the hillsides, forming
relatively shallow soils (less than 1m deep) with clayey
textures. On the lower parts of the hillsides, the soils
were found to be deeper (1�0–1�5m), and the soil types
identified as being the most common were Tipic
Xerochrepts, Fluventic Xerochrepts and Pachic Calcix-
erollic Xerochrepts.

The watershed covers approximately 160 ha with
homogeneous slopes of around 12%, with an altitude
ranging from 496 to 649m. The watershed is almost
completely cultivated and natural vegetation is only
found in hedgerows and along streams. The climate is
humid submediterranean, with a mean annual tempera-
ture of 13 1C. The average annual rainfall is approxi-
mately 700mm distributed on 105 rain days.

An automated meteorological and hydrological sta-
tion was established in 1994. Water quality data
(sediment yield, nitrate and phosphate content and
other agrochemicals) is recorded daily along with
precipitation and flow discharge data taken at 10min
intervals.

During the current research period an incipient cereal
crop covered most of the fields of La Tejerı́a watershed,
except for five fields (one ploughed field and four
vegetable fields) (Fig. 2). The fields were classified into
four classes according to their crop and tillage practise:
(1) ‘Cereal’, conventionally sown cereal fields; (2)
‘Compacted cereal’, cereal fields that were compacted
after sowing; (3) ‘Compacted vegetables’, compacted
fields where vegetables were sown by scattering the seed;
and (4) ‘Ploughed’, ploughed fields (Figs 2 and 3, Table
1). On each class a different number of fields was
monitored in this study as detailed in Table 1.
2.2. Satellite radar images

RADARSAT-1 is a satellite launched by the
Canadian Space Agency (CSA) in 1995 that incorpo-
rates a synthetic aperture radar (SAR) sensor operating
in the C band (frequency of 5�3GHz). RADARSAT-1
acquires images with HH polarisation, which means that
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Fig. 2. Spatial distribution of observed crop classes; monitored fields appear numbered and outlined
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the sensor emits and receives horizontally polarised
radiation pulses.
This sensor has several operational modes that lead to

different types of images according to their spatial
resolution and swath width. For this study the ‘Standard
Mode’ was adopted where images have a swath width of
100 km and a spatial resolution of about 25–30m. In
each operational mode, RADARSAT-1 is able to
acquire images with different incident angles. For this
research, images were selected in beam modes 1 and 2,
hereafter referred as S1 and S2, respectively (where the S
denotes ‘Standard Mode’), that provide lower incident
angles. At low incident angles vegetation-induced
attenuation and surface roughness influence are mini-
mised, yielding images more appropriate for soil
moisture research (Ulaby et al., 1982).
RADARSAT-1 images are commercialised in a range of

products depending on the required processing level. Path
Image SGF (standard georeferenced fine) images, which
were aligned parallel to the satellite orbital path and
radiometrically corrected, were selected for this study.
The RADARSAT-1 orbital repeat cycle is of 24 days.

However, combining different operation and beam
modes a higher temporal coverage can be achieved.
For this research, five RADARSAT-1 SGF images
were acquired over the Navarre region during spring
2003. Table 2 shows the main characteristics of the
RADARSAT-1 images used in this study.
2.3. Ground measurements

2.3.1. Soil moisture

The moisture content of the soils was monitored
through a stratified random sampling scheme according
to the observed soil types and the considered surface
state classes. Measurements were taken throughout the
whole catchment on each image acquisition day, using
60 sampling points.

The soil moisture was measured using a TRIME-FM3
(IMKO, GmBH) time domain reflectometry (TDR)
instrument connected to a portable three rod probe.
Rods were 16 cm long, and were inserted into the soil
with an angle of approximately 451 to sample the
moisture content of the first 10 cm soil layer. Three TDR
measurements were taken at each sampling point.

Observed moisture values reflected rainfall patterns
through the research period. On the two first dates, the
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Fig. 3. Surface estate of the observed crop classes over La Tejerı́a; ‘Compacted cereal’ (a, b); ‘Cereal’ (c, d); ‘Compacted
vegetables’ (e, f) and ‘Ploughed’ (g, h)
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soil moisture was high (around 0�35 cm3 cm�3). Subse-
quently, after 2 weeks without any precipitation, soil
moisture values dropped to 0�15–0�25 cm3 cm�3. For the
last two dates, the moisture increased following some
rainfall events (Fig. 4).
2.3.2. Surface roughness

Surface roughness was monitored collecting one-
dimensional surface height profiles through a 1m long
needle profilometer with a 2 cm interval between
needles.
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Table 2
Main characteristics of RADARSAT-1 standard georeferenced fine (SGF) images

Date Time Pass Beam mode Incident angle, deg

27/02/2003 6:23:10 Descending S1 20–27
06/03/2003 6:23:02 Descending S2 24–31
23/03/2003 6:23:09 Descending S1 20–27
30/03/2003 6:18:57 Descending S2 24–31
02/04/2003 17:50:22 Ascending S1 20–27

Table 1

Description of observed crop classes; the total number of fields and area of each class is shown as well as the number of monitored

fields

Class Description No. of
fields

Total area,
ha

No. of monitored
fields

Total area of monitored
fields, ha

Cereal Winter cereal sown conventionally 52 126�27 11 59�86
Compacted
cereal

Winter cereal compacted after sowing 8 17�95 2 7�90

Compacted
vegetables

Chickpeas sown scattered over
compacted fields

4 10�35 2 8�58

Ploughed Ploughed fields with bare soil surface 1 1�77 1 1�77

Date
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Surface roughness was assumed to be homogeneous
over fields belonging to each crop class (Table 1) and not
variable in time because no tillage was performed during
the research period. Therefore, surface roughness was
sampled in order to be able to quantitatively character-
ise the observed four surface state classes.
Surface profiles were collected parallel to the tillage

direction. Profiles were photographed, digitised, and
corrected for geometrical distortions. Finally, two
classical roughness parameters were derived from these
profiles for each sampling point: the standard deviation
of surface height s in cm and the surface correlation
length l in cm. The first parameter s is a measure of the
variability of the surface height (Fig. 5). In the case of a
discrete one-dimensional soil surface profile s is calcu-
lated as follows:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðz

2
i � z2Þ

N � 1

s
(1)

where: N is the number of points in the profile; zi is the
surface height at a point i in cm; and z̄ is the mean height
of the surface profile in cm.
The surface correlation length l gives a reference for

estimating the statistical independence of two points on
the surface; if two points are separated by a horizontal
distance larger than l, then their heights might be
considered to be statistically independent of one another
(Ulaby et al., 1982). For its determination, the normal-
ised autocorrelation function of the profile r(x0) must
be calculated [Eqn (2)]. The surface correlation length is
defined as the displacement for which the autocorrela-
tion function is equal to 1/e (Fig. 6) (Ulaby et al., 1982).

r x0ð Þ ¼

PNþ1�j
i¼1 zizjþi�1PN

i¼1z
2
i

(2)

where: r(x0) is the autocorrelation function that
measures the similarity between the height of two points
separated a certain displacement x0 ¼ ðj � 1Þ Dx; and j is
an integer X1 (Ulaby et al., 1982).
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Fig. 5. Example of a surface height profile; the parameter s is
the standard deviation of surface heights
The observed values for the parameter s on the
different classes were: 0�467 cm for ‘Compacted vege-
tables’, 0�854 cm for ‘Compacted cereal’, 1�002 cm for
‘Cereal’, and 2�568 cm for ‘Ploughed’; with standard
deviations of 0�057, 0�295, 0�375 and 0�723 cm, respec-
tively. The differentiability of the different classes was
clear except for the classes ‘Cereal’ and ‘Compacted
cereal’. Data variability increased as surface became
rougher (Fig. 7).

On the other hand, the parameter l showed the
following average values for the different classes:
2�669 cm for ‘Compacted vegetables’, 6�082 cm for
‘Compacted cereal’, 5�052 cm for ‘Cereal’, and 7�410 cm
for ‘Ploughed’; with high standard deviations of 3�775,
3�780, 3�042 and 2�345 cm, respectively. The variability of
this parameter was very high and seemed to increase over
smooth surfaces (Fig. 7). The ability of parameter l to
differentiate surface roughness classes is limited.

2.3.3. Vegetation cover

Vegetation cover data was collected in a nearby site
where winter cereal was sown in the same dates with
similar soil conditions and same climate. Vegetation
parameters (vegetation moisture Mn, and leaf area
index, ILA) were measured periodically and afterwards
interpolated linearly for the five image acquisition days
(Table 3).
2.4. Image processing

Images had to be converted from 16-bit greylevels
(called digital numbers) to backscattering coefficient
values s0 in order to extract biophysical information of
the terrain. This conversion was done following the
standard methodology proposed by Shepherd (2000).
The methodology requires information about the
incidence angle of each pixel (local incidence angle). In
the case of flat areas the local incidence angle can be
calculated from data in the image header file. However,
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Table 3
Estimated cereal cover parameteres for each image acquisition

date

Date Time after
sowing, days

Vegetation
moisture (Mv),

kg m�2

Leaf area
index (ILA)

27/02/2003 127 0�661 2�149
06/03/2003 134 0�728 2�267
23/03/2003 151 1�056 3�048
30/03/2003 158 1�239 3�512
02/04/2003 161 1�317 3�711
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Table 4
Number of ground control points collected for geocoding each

image and root mean square error of the applied transformations

Image Number of ground
control points

Root mean square
error, pixel

27/02/2003 5 0�81
06/03/2003 6 0�53
23/03/2003 5 0�20
30/03/2003 6 0�35
02/04/2003 5 0�91
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the studied area shows a hilly topography, therefore the
slope and aspect of each pixel were taken into account to
calculate the local incidence angle (Ulander, 1996).
After calculating the backscattering coefficient values,

the images were geocoded. Ground control points were
collected and a first-order transformation was applied
achieving a good coincidence between the different scenes
(root mean square error values, below 1 pixel) (Table 4).
Radar images, are affected by a random interference

phenomenon called speckle. Speckle causes a grainy
appearance and a reduced interpretability of targets and
features in the image. RADARSAT-1 SGF scenes
incorporate a 4 look ‘multilook’ processing that reduces
the magnitude of speckle by half. However, speckle was
still perceptible in the scenes used, so an adaptive image
filter was applied in order to reduce it over homo-
geneous areas. The filter selected for noise reduction was
a 7 by 7 window GammaMAP filter (Lopes et al., 1990).
Finally, values of s0 corresponding to each ground

measuring point were calculated and field and catch-
ment average values were computed.
2.5. Correction of the influence of vegetation

The vegetation cover in the cereal fields consisted of
incipient plants which increased in height from 10 cm,
reaching 20 cm at the end of the research period. As a
first approach, vegetation was assumed not to influence
s0, and as a second approach vegetation influence was
considered and corrected using a semi-empirical model.

The semi-empirical ‘Water Cloud’ model (Attema &
Ulaby, 1978) was selected to correct for the vegetation
influence. This model represents the canopy as a cloud
of identical discrete scatterers that attenuate the micro-
wave radiation and also contribute to the total canopy
backscatter as shown in Eqn (3).

s0can ¼ s0vegðyincÞ þ s0soilðyincÞ=L2ðyincÞ (3)

where: s0can is the total backscattering coefficient
observed from the canopy; s0vegðyincÞ is the vegetation
contribution to the total backscattering depending on
the incident angle; s0soilðyincÞ is the contribution of the



ARTICLE IN PRESS

CORRELATION BETWEEN SOIL MOISTURE AND RADARSAT-1 DERIVED BACKSCATTERING 127
soil that is attenuated twice by the canopy through its
loss factor L(yinc).
As the low degree of development of the canopy

s0vegðyincÞ can be considered negligible, assuming that the
canopy only acts attenuating the radiation (Taconet
et al., 1996), the vegetation loss factor depends on
vegetation cover water content (MV in kg m�2)
and incident angle as shown in Eqn (4) (Ulaby et al.,
1982):

LðyincÞ ¼ expðB1MV= cos yincÞ (4)

where: B1 is an empirical constant.
Shifting to dB units of measurement and assuming

that, for a given soil roughness, s0soil;dBðyincÞ depends
linearly on the soil moisture MS in %, as shown in Eqn
(5), Eqn (6) is obtained

s0soil;dBðyincÞ ¼ CMS þ D (5)

s0can;dB ¼
�20B1

ln 10 cos yinc

MV þ CMS þ D (6)

where: B1, C and D are empirical constants that can be
easily obtained through multiple regression or least
square techniques once MS and MV are known.
Therefore, soil surface backscattering values for

s0soil;dBðyincÞ can be obtained by subtracting the vegeta-
tion attenuation term from the RADARSAT-1 sensed
backscattering values s0can;dB:

s0soil;dBðyincÞ ¼ s0can;dB �
�20B1

ln 10 cos yinc

MV

� �
(7)

3. Results and discussion

In the present research, surface roughness was
assumed to be constant in time. Under this assumption,
it is possible to consider that, for each class, s0 is linearly
related to the soil moisture (Ulaby et al., 1982)
and associate s0 variations to moisture variations. In
this section, the correlation between s0 and the soil
moisture is analysed at three scales: point scale,
field scale and catchment scale. The influence of
the vegetation is assessed and, finally, the ability of the
RADARSAT-1 images to discriminate soil moisture
classes is studied.
3.1. Point scale correlation

Ground measured soil moisture values were com-
pared to s0 values at pixel level through the five different
image acquisition days. According to the assumption of
homogeneous surface conditions (surface roughness and
vegetation cover, for each considered class); a unique
regression line was fitted for all the points belonging to
the same class (Fig. 8). These regressions showed low
correlation values: a direct relation was observed
between both variables but dispersion was high in all
classes. This variability can be due to several causes.
Firstly, the influence of speckle causes pixel values to
vary randomly even after filtering the images; secondly,
discrete soil moisture point measurements were com-
pared to s0 values corresponding to one pixel (approxi-
mately 12�5m by 12�5m). Finally, the variability of the
surface roughness parameters on each class can also
cause the correlation coefficient to decrease.
3.2. Field scale correlation

Comparing the soil moisture measurements with the
s0 values at the field scale would a priori yield better
results because some of the variability observed at the
point scale could be reduced. For individual fields,
both variables showed good agreement in most cases
(Table 5). Fields belonging to the classes ‘Cereal’,
‘Compacted cereal’ and ‘Compacted Vegetables’
showed high correlation values. Slope values ranged
from 1�210 to 2�679 in the class ‘Cereal’ and were higher
in the smoother classes ‘Compacted cereal’ and
‘Compacted vegetables’ (2�823–3�287 and 4�057–5�900,
respectively). Intercept values ranged from 38�001 to
46�858 in the class ‘Cereal’; 51�916 and 54�693 in
‘Compacted cereal’; and 57�711 and 74�935 in ‘Com-
pacted vegetables’. The ploughed field had the lower
correlation value.

Assuming identical surface conditions in fields be-
longing to the same class, a unique trend line was fitted
for each class (Fig. 9). This time, agreement was good in
classes ‘Compacted cereal’ and ‘Compacted Vegetables’,
albeit the low number of fields considered (only two per
class) might be insufficient to extract any solid conclu-
sions. The class ‘Cereal’ showed a high data variability
meaning that fields cannot be considered as homoge-
neous. These differences between ‘Cereal’ fields can also
be noticed in the variability of slope values for each
independent field (Table 5).

In the case of ‘Cereal’ and ‘Compacted cereal’ fields
the vegetation cover could influence s0. The previously
mentioned ‘Water Cloud’ model was applied to account
for the vegetation attenuation. Apparently, the model
described adequately the influence of the vegetation
(Table 6). In the case of ‘Cereal’ fields the improvement
was clear, from a value of the coefficient of determina-
tion R2 of 0�444 (Fig. 9) to R2 of 0�675 (Table 6);
whereas in the ‘Compacted cereal’ fields the improve-
ment was slight, from a value for R2 of 0�815 (Fig. 9) to
R2 of 0�827 (Table 6).
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coefficient of determination
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3.3. Catchment scale correlation

The next spatial aggregation level studied was the
catchment scale. The experimental catchment used in
this study is small (160 ha), and therefore this spatial
scale can still be considered relevant for hydrological
and agronomic applications. Catchment average soil
moisture and s0 values were compared using data
corresponding to the five acquired scenes. Observed
agreement was good (Fig. 10). At this scale, variability
caused by surface roughness variability, vegetation
cover and other surface characteristics seems to decrease
being s0 more sensible to the soil moisture variations
(Cognard et al., 1995; van Oevelen et al., 1996). At high
aggregation levels the influence of speckle also de-
creases.
The observed linear regression shows a good correla-

tion, and the obtained slope and intercept were close to
values obtained by other authors (Le Hegarat-Mascle
et al., 2002). Although correlation was good, vegetation
cover could be attenuating s0 values as observed at the
field scale. The ‘Water Cloud’ model was also applied at
the catchment scale leading to Eqn (8) and achieving a
value for R2 of 0�926:

s0can ¼
�1�364MV

cos yinc

� 10�329þ 0�161MS (8)

3.4. Discrimination of soil moisture classes

The ability of the proposed linear relations for
discriminating different soil moisture ranges or classes
was tested. Three different soil moisture classes were
identified according to crop development issues.

(a) Class 1—low soil moisture valueso20%

At low soil moisture values, plants are unable to
extract a sufficient amount of water from the soil. Crops
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Table 5

Observed linear regression models for each field

Class Field no. Slope Intercept R2

Cereal 196 1�418 38�309 0�736
199 1�210 38�252 0�834
200 1�960 38�001 0�499
201 2�028 40�718 0�709
235 1�750 41�586 0�808
238 2�341 44�837 0�807
240 1�366 39�434 0�810
243 2�679 43�906 0�664
248 2�639 46�858 0�826
258 1�776 41�134 0�737
511 1�620 44�102 0�798

Compacted cereal 188 3�287 54�693 0�793
234 2�823 51�916 0�833

Compacted vegetables 194 4�057 57�711 0�648
250 5�900 74�935 0�938

Ploughed 232 1�492 34�281 0�483

Fields are grouped into classes and the slope, intercept and coefficient

of determination R2 are given for each linear regression model.
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can experience severe yield reductions depending on the
magnitude of the water deficit and its duration.

(b) Class 2–medium soil moisture values of 20–30%

These moisture conditions are assumed to allow crop
growth and development in optimal conditions.

(c) Class 3—high soil moisture values430%

Excessive soil moisture values also cause yield
reductions by hampering the root respiration rate. On
the other hand, the occurrence of pests, such as fungal
0

10

20

30

40

0

10

20

30

40

Backscattering coefficient �0, dB
−14 −12 −10 −8 −6 −4 −2 0

So
il 

m
oi

st
ur

e 
M

S,
 %

MS  = 3.084 �0 + 53.442

R2 = 0.815

Backscattering coefficient �0, dB
−14 −12 −10 −8 −6 −4 −2 0

So
il 

m
oi

st
ur

e 
M

S,
 %

MS  = 1.490 �0 + 34.280

R2 = 0.483

(b)

(d)

sture (MS) and the backscattering coefficient s0 at the field scale
real’;(c) ‘Compacted vegetables’;(d) ‘Ploughed’; R2, coefficient
ination

Table 6
Fitted ‘Water Cloud’ model equations for ‘Cereal’ and

‘Compacted cereal’ fields, which values for the different of

determination R2

Class Model coefficients R2

B1 C D

Cereal 0�244 0�157 �9�144 0�675
Compacted cereal 0�084 0�247 �14�270 0�827
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infestations, is favoured affecting crop development as
well.
The ability of RADARSAT-1 derived s0 for dis-

criminating between moisture classes was assessed at the
field and catchment scale. A clear differentiation
between classes will provide a means for detecting
whether crops are suffering any kind of moisture related
stress. The analysis of the variance (ANOVA) test was
used to see if there was any significant difference in s0

for the considered moisture classes.
On the other hand, the influence of vegetation

attenuation was also evaluated by looking at the
discrimination ability of corrected backscattering values
[Eqn (7)].
At the field scale the ANOVA test indicated that there

were statistically significant differences on the back-
scattering coefficient of the three considered moisture
classes. However, the three classes showed a certain
overlap that was particularly noteworthy between
classes 1 and 2 (Table 7).
Although the separation between Classes 1 and 2 was

not clear, s0 values above �6�416 dB could be con-
sidered to belong to Class 3 with a 95% confidence
(Table 7).
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Fig. 10. Linear regression model between the backscattering
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Tabl

Statistical description of r0
values belonging to each class at the fi

standard deviation and typical error of r0, a

N Mean s0, dB Standard deviation s0, dB Typi

Class 1 6 �8�873 1�120
Class 2 41 �8�094 1�617
Class 3 37 �5�948 1�404
At the catchment scale, the separation between the
three classes was more evident [Fig. 11(a)]. However, the
number of data available (N ¼ 5) limited the analysis.
Approximately, s0 values below �8�0 dB could be
assigned to Class 1 and values above �6�5 dB to Class
3, while Class 2 ranged between those two values. These
class limits are consistent with those observed at the field
scale (Table 7), however more observations would be
needed to draw more consistent conclusions.

After correcting the s0 values for the vegetation
attenuation, the results were quite similar although class
limit increased in value (Table 8). The ANOVA test
found significant differences between the three classes at
the field scale, as well as at the catchment scale. At the
field scale, despite the existing overlap between classes,
the estimated intervals for each class at the 95%
confidence level were clearer than before correcting for
the vegetation attenuation (Table 8).

Values of s0 below �7 dB could be classified as
Class 1 and values of s0 above �5 dB to Class 3. Class 2
seemed to have quite a reduced variation range,
approximately from �7 to �5 dB. At the catchment
scale, although proposed classification seemed to be
reasonable [Fig. 11(b)], more observations are needed to
obtain statistically significant class limits.
4. Conclusions

The use of linear regression models in determining the
relationship between the RADARSAT-1 backscattering
coefficient s0 and the top soil moisture content MS was
investigated. Such relationship makes the retrieval of
soil moisture from backscattered values simple as it does
not require the measurement of other surface character-
istics, such as soil roughness.

Fitted linear regressions between s0 and the soil
moisture showed that correlation values improve from
pixel scale to field scale and further up to catchment
scale. This indicates that at high aggregation levels the
variability of surface characteristics, such as roughness,
is averaged and therefore s0 becomes more sensitive to
soil moisture variations.
e 7

eld scale; the number of fields (N) is given along with the mean,
nd its expected interval at 95% confidence

cal error, dB 95% Confidence interval for the mean s0, dB

Lower limit Upper limit

0�457 �10�048 �7�698
0�252 �8�604 �7�583
0�231 �6�416 �5�480
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Table 8
Statistical description of r0 values belonging to each class at the field scale after correcting the vegetation attenuation on r0 values the

number of fields (N) is given along with the mean, standard deviation and typical error of r0, and its expected interval at 95%

confidence

N Mean s0, dB Standard deviation s0, dB Typical error, dB 95% Confidence interval for the mean s0, dB

Lower limit Upper limit

Class 1 6 �7�574 1�318 0�538 �8�958 �6�190
Class 2 41 �6�370 1�921 0�300 �6�976 �5�763
Class 3 37 �4�516 1�585 0�260 �5�045 �3�988

Soil moisture class
321

−12

−10

−8

−6

−4

−2

B
ac

ks
ca

tte
ri

ng
 c

oe
ff

ic
ie

nt
 �

0 ,
 d

B

Soil moisture class
321

−12

−10

−8

−6

−4

−2

B
ac

ks
ca

tte
ri

ng
 c

oe
ff

ic
ie

nt
 �

0 ,
 d

B

(a) (b)

Fig. 11. Scatterplot of backscattering values for each soil moisture class at the catchment scale; Class 1 corresponds to soil moisture
values below 20%, Class 2 ranges from 20% to 30% and Class 3 represents moisture values above 30%. (a) Backscattering values

with no correction for the vegetation attenuation, and (b) corrected backscattering values
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Crops and vegetation covers, also influence s0,
hampering the retrieval of soil moisture over vegetated
areas. In the case of incipient cereal crops, the vegetation
cover can be assumed only to attenuate the back-
scattered signal from the soil surface. This attenuation
can be calculated as a function of the vegetation
moisture content by means of the semi-empirical ‘Water
Cloud’ model, providing a straightforward means for
correcting the s0 values.
In this study, it has been found that RADARSAT-1

derived s0 values can be used to discriminate soil
moisture classes. After correcting the vegetation at-
tenuation, fields with values of s0 below �7 dB can be
classified as Class 1 (moisture values below 20%) with a
95% confidence level, and therefore, can be considered
to experience some degree of water stress. In the same
manner, fields with values of s0 above �5 dB can be
classified as Class 3 (moisture values above 30%) with a
95% confidence level, and will be prone to suffer some
kind of stress related to an excessive water content of the
soil, such as fungal infestations.
At the catchment scale, the variability within classes
seemed to decrease, thus indicating that the classifica-
tion in moisture classes could be more accurate for large
fields or higher aggregation levels.

The presented approach is completely empirical and
needs to be validated in following campaigns, especially
over moisture conditions higher and lower than the
conditions of the present study. The consistency of the
linear regressions and the class limits will also be tested
to evaluate the application of this technique on an
operational manner.

On the other hand, the approach is simple to apply as
surface roughness ground measurements are not needed
for its application. It will be useful for application
scenarios such as crop growth monitoring and model-
ling, where an approximate knowledge of the moisture
content of soils is required but very detailed soil
moisture estimations are not needed.

The fact that at coarser spatial scales the accuracy of
the soil moisture retrieval improved is relevant for
hydrological applications, because runoff predictions
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can be improved if the average soil moisture content of
the catchment before a rainfall event is known.
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